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Nonlinear dynamics of density waves in granular flows
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Received: 11 March 1998 / Revised and Accepted: 3 July 1998

Abstract. We study granular flows through narrow channels driven by gravity in the framework of the
kinetic theory for dissipative dense gases. We derive equations of motion for quasi-one-dimensional systems.
In a certain range of flow density, the steady homogeneous regime is found to be unstable against the
formation of density waves. We show moreover that near the onset of the instability, the governing equation
for the flow density is a mixture of the Korteweg-de-Vries equation, which leads to soliton, and the Bürger
equation which exhibits spatio-temporal chaos. The competition between chaos and solitons may lead
either to regular spatially ordered density waves or to chaotic dynamics. We argue that these two types of
dynamics can be encountered experimentally according to the channel width and the dissipative properties
of the granular media.

PACS. 81.05.rm Porous materials; granular materials – 47.50.+d Non-Newtonian fluid flows
– 05.20.Dd Kinetic theory

1 Introduction

The flow of granular media [1,2] gives rise to a variety of
dynamical phenomena as wide as, and perhaps even wider,
than does the fluid flow. Whereas we have the Navier-
Stokes equation as a reliable model for almost all the types
of fluid flows, the situation is not so clear in the realm
of granular flows where a general and reliable description
is not yet available. Nowadays, the only sound theoretical
basis for the description of rapid granular flow is the model
of Jenkins and Savage [3] which is inspired by the kinetic
theory of dense gases. In this paper, we show that the
continuum model of Jenkins and Savage can account for
the formation of density waves in granular flows through
narrow vertical channels. Formation of density waves in
such flows has been clearly observed in experiments [4,5]
and confirm by numerical simulations [5–7]. The density
waves propagate at a slower speed than the mean flow of
particles and exhibit frequently a spatial ordering along
the flow with a well-defined wavelength [9]. This latter
observation supports the idea that the formation of den-
sity waves results in a dynamical instability connected to
grain inelasticity, as in other granular contexts such as the
clustering instability in dissipative gases [8] or the heap
formation under vibration [10,11].

Our aim here is to show than the density waves can
be explained as the consequence of a dynamical instabil-
ity. For that purpose, we derive from the model of Jenkins
and Savage equations of motion for quasi-one-dimensional
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flows. We show that the steady homogeneous flow is sus-
ceptible to be unstable against small fluctuations. Indeed,
we find that below a critical value of the flow density,
the steady homogeneous flow destabilizes and gives rise
to density waves. Close to the onset of the instability, we
extract scaling laws for the wavelength of the most dan-
gerous density fluctuation – which is expected to prevail in
the subsequent nonlinear evolution and therefore to gov-
ern the density waves dynamics – and for its propagation
velocity as a function of the relevant parameters (i.e., the
channel width, the roughness of the channel walls and the
grain inelasticity). Furthermore a nonlinear analysis re-
veals that in the vicinity of the instability the governing
equation for the flow density is a combination between
the Korteweg-De-Vries equation, which leads to soliton,
and the Bürger equation, which is known for chaotic be-
haviour. The competition between chaos and solitons may
lead either to regular spatially ordered density waves or to
spatio-temporal chaotic dynamics. We find that the for-
mation of spatially ordered density is favoured by narrow
channels and dissipative granular media whereas chaotic
dynamics appears for large channels and weakly dissipa-
tive grains.

This paper is organized as follows. In Section 2, start-
ing from the kinetic theory model of Jenkins and Savage,
we derive equations of motion for quasi-one-dimensional
flows through vertical channels. In Section 3, we investi-
gate the linear stability of the steady homogeneous flow
whereas Section 4 is devoted to the nonlinear analysis of
the flow dynamics. Finally, the summary together with
outlooks are presented in Section 5.
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2 Theoretical approach

Our approach is based on the Jenkins-Savage model in-
spired by the kinetic theory of gases. First, we will write
down, in the framework of the kinetic theory, the general
equations of motion for a granular gas flowing in a verti-
cal channel and will determine the properties of a steady
homogeneous two-dimensional flow. Then, on the basis of
these results we will derive a simplified version of equa-
tions of motion for quasi-one-dimensional systems.

We consider a granular gas, composed of identical rigid
spherical particles of diameter σ whose collisions are char-
acterised by a fixed coefficient of restitution e, flowing
through a vertical channel under gravity. The fields of
interest will be the mass density ρ (or equivalently the
packing fraction ν), the mean velocity v about which the
actual particle fluctuates and the granular temperature T
(that measures the energy per unit mass of the velocity
fluctuations). According to the Jenkins-Savage model [3],
the equation of motions for a granular gas are given

∂ρ

∂t
= −∇ .(ρv) , (1)

ρ
Dv

Dt
= ρg +∇ .P , (2)

3

2
ρ
DT

Dt
= −∇ .Q + tr(PE)− γ , (3)

whereD/Dt is the material derivative, P the stress tensor,
Q the heat flux, E the symmetrized velocity gradient ten-
sor and γ represents the rate of energy loss due to inelastic
collisions. These three equations are nothing but the bal-
ance laws for mass, linear momentum and energy fluctu-
ations. We should point out that the interaction between
the grains and the surrounding air is neglected here. This
is justified as soon as the grain diameter is large enough
so that the drag force due to air is small compared with
the gravity force. In the case of a flow composed of steel
beads moving at an average speed of 1 m/s, the drag force
can be safely neglected if the bead diameter is of order of
millimetre or larger.

These equations of motion which are of quite general
nature must be supplemented by constitutive relations.
Here we employ the constitutive relation derived by Jenk-
ins and Savage using a kinetic approach [3]. The stress
tensor assumes the standard hydrodynamic form

P = −phI + 2η(E −
1

3
∇.v I) , (4)

where I is the unit tensor, ph the pressure and η the vis-
cosity. In the limit of dense granular gases, the pressure
and the viscosity are given by

ph = 4ρGT , (5)

η = bσρGT 1/2 , (6)

with

G ≡ νg0(ν) =
ν(2− ν)

2(1− ν)3
· (7)

b ' 2/π1/2 and g0 is the radial distribution function [12]
which depends on the solid volume fraction ν (ν = ρ/ρs
where ρs is the particle mass density). We recall that σ
is the particle diameter. The heat flux and the dissipation
are given by

Q = −κ∇T = −cσρGT 1/2∇T , (8)

γ = d(ρ/σ)(1− e)GT 3/2 . (9)

κ is the heat conductivity and the quantities c and d are
numerical constants (c ' 24/π1/2 and d = 24/π1/2).

To complete the description, the equations of motion
(1–3) should be supplemented by the boundary conditions
at the channel walls. Theses conditions are nothing but the
balance of collisional exchange of momentum and energy
expressed at the channel walls. Here we will consider the
walls to be rigid planes to which particles of the same na-
ture to those of the flow are attached. The bumpiness of
the walls will be characterised by an angle θ that mea-
sures the average depth that a flow particle can penetrate
between wall particles.

We are now in position to determine the properties of
steady homogeneous flows through vertical channels. We
will restrict our analysis to narrow channels where the
shear zone is expected to span the full width of the flow.
(Ox) will be referred to as the axis perpendicular to the
flow direction (the origin O is chosen to be at the middle
of the channel) and (Oz) as the axis parallel to the flow.
The system is invariant in the (Oy) direction. For steady
homogeneous flows, the equations of motion (2–3) reduce
to

ph = 4ρGT 2 = constant , (10)

S = bσρGT 1/2∂xu = −g

∫ x

0

ρ(ξ)dξ , (11)

∂xxT
1/2 − k2T 1/2 = 0 , (12)

where S is the shear stress, u is the component of
the velocity field along the z coordinate, and k2 =
(1/bcσ2)[bd(1− e)− 4S2/p2

h].
In order to pursue our analytical treatment, we will

introduce some simplifications. We will consider that the
density ρ and the temperature T are practically constant
over the flow width. Although these assumptions are not
fully consistent with equation (12), we will see that the
physical coherence of the problem is still preserved. Taking
advantage of these two assumptions, we get

S = −ρgx , (13)

u(x) = u∗ − g
[x2 − (l/2)2]

2bσGT 1/2
, (14)

where u∗ is the slip velocity at the walls and l is the chan-
nel width.

The slip velocity is determined thanks to the balance
of momentum at the walls which yields [13]

u∗ = (π/2)1/2f T 1/2S∗/ph , (15)
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where S∗ is the shear stress at the walls and f is the slip
coefficient. f depends only on the walls bumpiness and
for small values of the bumpiness angle θ, f ' 2/θ2. The
temperature of the flow is determined by the balance of
energy at the walls which requires that the dissipation D
due to collisions between the particles of the flow and the
walls equals the rate of working of the shear stress through
the slip velocity. Consequently, we have

D = u∗S∗ , (16)

where D is given by [13]

D = (2/π)1/2h (1− e)T 1/2ph . (17)

The coefficient h depends only on the bumpiness (h '
1 + θ2/4). Combining the boundary conditions (15–16)
with equations (10, 13), we obtain the expression for the
granular temperature of the flow

T =
gl

8µG
, (18)

with µ = [2(1− e)h/πf ]1/2.
The properties of the steady homogeneous flow are now

completely determined. Taking advantage of the expres-
sion for the temperature, one can rewrite the velocity field
as

u(x) = u∗ +∆u [1− (2x/l)2] , (19)

with

u∗ = (π/2)1/2f

[
µgl

8G(ν)

]1/2

, (20)

∆u =
l

bσ

[
µgl

8G(ν)

]1/2

. (21)

We can indeed note that given the flow density ρ (or equiv-
alently the packing fraction ν), the channel width l and
the bumpiness angle θ of the walls, the velocity profile
is entirely determined. Moreover, a careful analysis shows
that the slip velocity u∗ is a decreasing function of the
wall bumpiness angle whereas∆u (which characterizes the
shear rate at the walls) increases with the wall roughness.
Finally, one should point out that such a parabolic veloc-
ity profile has been measured recently by the Clément’s
Group [14] for particles flowing in a vertical narrow pipe.
For large pipes, the measured profile deviates however sig-
nificantly from the parabolic profile, but this is not sur-
prising since our development is expected to be valid only
for narrow channels.

Before proceeding further, we shall introduce an addi-
tional quantity (which will be needed later on), that is the
mean flow velocity U over the width of the channel. The
calculation for U yields

U = u∗ +
2

3
∆u =

(
1 +

2

3λ

)
u∗ , (22)

where

λ = (π/2)1/2b(σ/l)f ∼ (σ/l)/θ2 . (23)

In the limit of small bumpiness angles (i.e., θ < (σ/l)1/2),
λ is greater than unity so that U ' u∗ (the mean flow
is then mainly controlled by the slip velocity). If we re-
strict our analysis to bumpiness angles θ < 0.25, the ap-
proximation is legitimate as soon as the channel width is
less then 50σ, which is consistent with the fact that our
approach is expected to be valid only for flows through
narrow channels. In this limit, all the physical quantities
can be expressed as a function of the mean velocity U in
a simple manner. Indeed, the granular temperature, the
viscosity, the pressure and the shear stress at the walls
can be rewritten as

T 1/2 = (2/π)1/2 U

µf
, (24)

η = (2/π)1/2bσρG
U

µf
, (25)

ph = (8/π)ρG
U2

µ2f2
, (26)

S∗ = µ ph . (27)

These results are not surprising and are consistent with
those found for a granular material under shear stresses
[3]. In addition we should point out here that the shear
stress at the walls is proportional to the square of the
mean velocity U which is itself proportional to the shear
rate ∆u/l (see Eq. (21)) and thus follows Bagnold’s
law [15].

The last step of our strategy is to use the proper-
ties of the steady homogeneous flow to write down a
simplified version of the equations of motion for quasi-
one-dimensional systems. Quasi-one-dimensional systems
refer to flows which can be simply described by their mean
density and velocity over the channel width. We shall con-
sider here only flow regimes which deviates slightly from
the steady homogeneous flow and assume again that the
flow density (or packing fraction) remains practically con-
stant over the channel width. For such flow regimes we
reasonably expect that the local properties (temperature,
pressure and viscosity) of the flow depend only on the lo-
cal mean velocity U and the packing fraction ν, and that
they obey the expressions found in the steady homoge-
neous flow regime (Eqs. (24–26)). As a consequence, the
temperature, the pressure and the viscosity are only de-
pendent of the spatial coordinate z through the variation
of the local mean velocity U(z) and packing fraction ν(z).
For such flow regimes, the equation for the local mean ve-
locity U is obtained by considering the balance equation
for momentum (Eq. (2)) projected onto the flow direction
and integrated along the transverse direction

ρ

(
∂U

∂t
+ U

∂U

∂z

)
= ρg −

∂

∂z

(
ph +

4

3
η
∂U

∂z

)
−

2S∗

l
·

(28)
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Taking advantage of the expressions of η, ph and S∗ (Eqs.
(25–27)), the equation for U finally reads

νl

(
∂U

∂t
+ U

∂U

∂z

)
= νgl− α(ν)U2

− l
∂

∂z

[
β(ν)U2

]
−
l2

3

∂

∂z

[
γ(ν)

∂U2

∂z

]
(29)

with α(ν) = [16/πµf2]νG(ν), β(ν) = [1/2µ]α(ν), γ(ν) =
[λ/2]α(ν). The right side of this equation embraces four
factors affecting the granular flow. The second term repre-
sents the shear stress due to the walls of the channel. The
third one is a moderating term due the pressure gradient
and the last term models the viscosity effect of the granu-
lar gas. Combining equation (29) with mass conservation
equation

∂ν

∂t
+
∂(νU)

∂z
= 0 , (30)

we have a close set of equations for the mean velocity U
and the packing fraction ν. This set of equations is remi-
niscent of those proposed in traffic flow models [16]. The
stationary solution of these equations corresponds to the
steady homogeneous flow. It is characterized by a mean
velocity U0

U0 =

[
ν0gl

α(ν0)

]1/2

= (π/2)1/2f

[
µgl

8G(ν0)

]1/2

, (31)

for a packing fraction ν0.

3 Linear analysis

The natural next step is to study the linear stability of
the steady homogeneous flow. The principle consists in
analysing fluctuations about the uniform steady solution
by linearizing the motion equations (29–30) with respect
to the amplitude of these fluctuations. For that purpose,
we assume that the packing fraction and the velocity of
the homogeneous flow undergo a small perturbation:

ν = ν0 + εν1e
iqz+Ωt , (32)

U = U0 + εU1e
iqz+Ωt . (33)

ε is a small parameter, q is the wave number of the pertur-
bation and Ω is its growth rate. Plugged into the motion
equations (29, 30), we get to first order in ε

Ω = ikU0 −
g

U0

(
1 + i

β0

α0
ql +

γ0

3α0
q2l2

)
+
g

U0

[(
1 + i

β0

α0
ql +

γ0

3α0
q2l2

)2

−
U2

0

g

(
1− α′0

U2
0

gl

)
iq −

ν0β
′
0

α0

U2
0

gl
q2l2

]1/2

(34)

where we have set α0 = α(ν0), β0 = β(ν0), γ0 = γ(ν0)
and the primes stand for derivatives with respect to ν.
For small wave numbers, we can perform an expansion in
power of q. For the real part of the growth rate, we get

<(Ω) = B(ν0)q2l2 − C(ν0)q4l4 + o(q5) , (35)

where

B(ν0) =

[
U2

0

4gl
(1− α′0

U2
0

gl
)2 −

β0

α0

]
U0

l
· (36)

The coefficient C depends on the packing fraction ν0 and
is found to be always positive. The stability of the flow is
determined by the sign of the real part of the growth rate.
The flow is stable if <(Ω) < 0 for all q modes. Conversely,
it is unstable if there exist at least one wave number for
which <(Ω) > 0.

Let us make first general comments before computing
equation (35).

(i) For long wavelength deformation, the term propor-
tional to q2 in (35) is dominant and then will determine
the stability of the steady homogeneous flow. The sign of
this term is given by that of the coefficient B which con-
sists of two contributions (see expression (36)). The first
contribution is positive and thus plays a destabilising role.
It expresses the competition between the gravity force fg
and the shear force S∗ (due to the channel walls) as a re-
sult of density fluctuations: δfg ∼ gδν and δS∗ ∼ α′0U

2
0 δν.

In general, the resulting force is non-zero and tends to
destabilize the steady homogeneous flow. In the present
situation, the shear force always dominates over the grav-
ity force. The second contribution in B is negative and
plays therefore a stabilizing role. It expresses the effect
of the pressure gradient which tends to reduce the flow
inhomogeneities. Depending on the strength of the stabil-
ising contribution and of the destabilising one, the steady
homogeneous flow will be either stable or unstable.

(ii) The second term in (35) (which is proportional to
q4) is of smaller order and is thus only pertinent for shorter
wavelength perturbations. This term is negative (since the
coefficient C is positive) and stands for the stabilising ef-
fect of the viscosity which prevents the flow from density
fluctuations with arbitrarily small wavelengths.

The computation of equation (35) yields further re-
sults. We find that there exists a critical packing fraction
νc (to be determined below) above which the steady homo-
geneous flow is stable. All the modes of the perturbation
have a negative growth rate (see Fig. 1). On the contrary,
below this critical packing fraction the flow destabilizes:
there is a band of unstable modes which grow in course
time (see Fig. 1). The critical packing fraction νc is deter-
mined by B(νc) = 0 which gives

ν2
c

G(νc)

[
G′(νc)

G(νc)

]2

=
32

πf2µ2
'

8θ2

(1− e)
· (37)

The value of νc crucially depends on the wall bumpiness
and on the dissipative property of the granular media
(through the restitution coefficient e), but it is indepen-
dent of the channel width. In Figure 2, we have plotted νc
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Fig. 1. Real part of the growth rate as a function of the wave
number of the perturbation. Full line: unstable. Dashed line:
stable.
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Fig. 2. The critical packing fraction νc as function of the
bumpiness angle θ. This curve delimits the the region (in pa-
rameter space) where the steady homogeneous flow is stable
and that where it is unstable.

as a function of the bumpiness angle θ. We can note that
νc is very sensitive to the wall bumpiness and increases as
the wall roughness (i.e., the bumpiness angle) gets smaller.
For e = 0.95, we find that νc = 0.5 for θ ' 0.17. For
bumpiness angles θ < 0.14, νc is found to be greater than
the maximum packing fraction of a disordered packing
of spheres (i.e., 0.64). This simply means that for these
bumpiness angles the steady homogeneous flow can never
be stable.

It can be interesting to evaluate the wavelength of the
most dangerous mode qmax (that is the fastest growing
mode). Indeed, the most dangerous mode is expected to
prevail in the subsequent nonlinear evolution of the flow
and may give an estimate of the wavelength of the spatial
ordering of the density waves. Let us first rewrite the real
part of the growth rate in the vicinity of the instability
threshold. We get

<(Ω) ' (νc − ν0)|B′c|q
2l2 − Ccq

4l4 , (38)

where

B′c ≡
∂B

∂ν
|ν=νc , (39)

Cc ≡ C(νc) =
λ

24

(
νcβ
′
c

αc
+
βc

αc

)
Uc

l
· (40)

Note that B′c is negative. The most dangerous mode qmax
is then easily calculated

l2q2
max =

|B′c|

2Cc
(νc − ν0) . (41)

For rather high packing fraction (i.e., νc > 0.5), we find
that the wavelength Λmax of the most dangerous mode
(Λmax = 2π/qmax) scales approximatively as

Λmax/l ∼ θ (σ/l)1/2(νc − ν0)−1/2 . (42)

It should be noted that the wavelength Λmax of the most
dangerous mode does not scale linearly with the channel
width l but as the square root of l. In addition, we expect
that Λmax increases as the bumpiness angle decreases. For
(νc − ν0) ∼ 0.1, θ ∼ 0.2 and l ∼ 10σ, Λmax is found to be
of order of five time the channel width.

To complete this stability analysis, we should examine
the imaginary part of the growth rate. The expansion of
equation (34) in power of q gives for the imaginary part
of Ω

=(Ω) = −U0

{
1 +

1

2
(1− α′0

U2
0

gl
)

}
q +D(ν0)q3 + o(q4) ,

(43)

where D is a function of the packing fraction that we
do not need to specify for the moment. The existence
of a non-zero imaginary part entails that the modes of
the perturbation are not stationary but are drifting along
the flow. The drift velocity V0 is simply given by V0 =
−=(Ω)/q. It yields to lowest order in q

V0 = U0 +
U0

2

(
1− α′0

U2
0

gl

)
= U0(1− ν0G

′
0/2G0) . (44)

It is interesting to note that the drift velocity of the
modes of the perturbation is always less than the veloc-
ity of the flow. Close to the threshold of the instability
(i.e., ν0 = νc), the drift velocity of the unstable modes is
given by Vc = Uc(1 − νcG′c/2Gc) and is found to be neg-
ative. This means that the unstable modes propagate up-
wards. Furthermore for rather high packing fraction (i.e.,
νc > 0.5), Vc is found to behave as

|Vc| ∼ θ (1− e)−1/2 . (45)

Vc therefore increases as the bumpiness angle and the
restitution coefficient get larger.

The results of the linear stability analysis suggest that
in the unstable regime (close to the instability threshold)
the flow should give rise to spatially ordered density waves
propagating at the speed Vc. In addition, the order of mag-
nitude of the wavelength characterizing the spatial order-
ing is expected to be given by that of the most dangerous
mode qmax. However, only a nonlinear analysis can bring
sound informations about the flow dynamics in the unsta-
ble regime. The following section is precisely devoted to
the subsequent nonlinear evolution of the flow.

4 Nonlinear analysis

In order to investigate carefully the subsequent devel-
opment of the instability, the nonlinear terms neglected
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in the linear analysis should be taken into account.
To do this, we shall derive a nonlinear equation for the
packing fraction and velocity of the flow by means of
a multi-scale analysis. We introduce a small parameter
ε = (νc − ν0) which measures the distance from the in-
stability threshold. In Fourier space, we have obtained
Ω ∼ εq2− q4 + iq3 (cf. Eqs. (38, 43)). The imaginary term
linear in q has been absorbed by means of Galilean trans-
formation z → z−V0t. As seen in the previous section, the
fastest growing mode corresponds to a wave number which
scales as

√
ε and the corresponding growth rate scales as

ε2. The imaginary part of Ω would scale as ε3/2 and it
dominates in principle. This means that in a multi-scale
analysis we have to introduce a short time associated with
the propagation and a long time that determines the time
scale of the amplification or attenuation of the instability.
The total time is T = T1 + T2 where T1 = ε3/2t is the
short time and T2 = ε2t the long time. We will also intro-
duce a slow spatial variable Z =

√
εz. The first nonlinear

term that appears in the nonlinear expansion of the pack-
ing fraction (as well as the flow velocity) is of the form
ννz and the next one ννzz + ν2

z . Both terms scale as ν2.
However the first term contains only one derivative and it
is this one which dominates in the long wavelength regime
we are interested in. We can show that using a balance be-
tween the linear terms and nonlinear ones, the amplitude
scales as ν ∼ ε3/2. The strategy is therefore to expand the
packing fraction and the velocity of the flow as follows

U = U0 + ε3/2U1 + ε2U2 + ε5/2U3 + ... , (46)

ν = ν0 + ε3/2ν1 + ε2ν2 + ε5/2ν3 + ... (47)

The scheme is to use the motion equations (29, 30) to
deduce successively high-order contributions in power of
ε. The first non-trivial contribution comes to order ε3

v1 = −a0ν1 , (48)

∂ν1

∂T1
− a1

∂3ν1

∂Y 3
= 0 , (49)

where

a0 = (G′c/2Gc)Uc , (50)

a1 = Dc =
λ

24
(νcG

′
c/Gc)l

2Uc . (51)

We recall that D is the coefficient of the cubic term ap-
pearing in the imaginary part of the growth rate calculated
in Section 3 and that Dc ≡ D(νc). To next order, we get

v2 = −a0ν2 , (52)

∂ν1

∂T2
+
∂ν2

∂T1
= a1

∂3ν2

∂Z3
− a2

∂2ν1

∂Z2
− a4

∂4ν1

∂Z4
+ a3

∂ν2
1

∂Z
,

(53)

where

a2 = l2|B′c| , (54)

a3 =
Uc

8Gc

[
2(νcG

′′
c + 2G′c)− 3νc

G′2c
Gc

]
, (55)

a4 = l4Cc . (56)
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Fig. 3. Spatio-temporal potrait of the packing fraction of the
flow for A1 = 0.3.

B′c and Cc are the coefficients of the quadratic and quartic
terms appearing in the real part of growth rate calculated
in Section 3 (see Eqs. (39, 40)). Combining equations (49,
53) and setting ν̂ = ν1 + ε1/2ν2 we obtain

∂ν̂

∂T
= ε−1/2a1

∂3ν̂

∂Z3
− a2

∂2ν̂

∂Z2
− a4

∂4ν̂

∂Z4
+ a3

∂ν̂2

∂Z
· (57)

Let us make a few comments about this equation. (i) Seek-
ing perturbations of the form ν ∼ eiqZ+ΩT , we recover
the linear spectrum Ω = a2q

2 − a4q
4 + iε−1/2a3q

3 found
in the linear stability analysis. (ii) In absence of the dis-
sipative term this equation reduces the Bürger equation
which is variant of the Kuramoto-Sivashinsky equation
(KS). When the destabilising term ν̂zz together with the
smoothing one ν̂zzzz is absent, the equation reduces to
the Korteweg-de-Vries equation (KDV). Thus equation
(57) is a mixture of the KS equation and KDV equation.
KS is known to produce spatio-temporal chaos, while the
KDV one gives rise to solitons. The same kind of equation
has been already encountered in other physical processes
as step-flow growth [17].

In order to analyse the equation (57), we find it con-
venient to rescale all the variables in a such that only
one parameter survives. Making the transformation ν̂ →
(a2/a3)(a2/a4)1/2ν̂, T → (a4/a

2
2)T and Z → (a4/a2)1/2Z,

equation (57) reads

∂ν̂

∂T
= A1

∂3ν̂

∂Z3
−
∂2ν̂

∂Z2
−
∂4ν̂

∂Z4
+
∂ν̂2

∂Z
(58)

where A1 = a1ε
−1/2/(a2a4)1/2. It should be noted that

in the rescaled variables, the linear spectrum is Ω =
q2 − q4 + iA1q

3. The competition between solitons and
chaos depends crucially on the order of magnitude of A1.
This aspect has been already investigated in [17] and we
find it worthwhile to recall the main outcomes. For small
value of A1 (see Fig. 3, A1 = 0.3), spatio-temporal chaos
prevails. There is no intrinsic order: density waves arise
and die in a erratic way. Up on an increase of A1 there is
formation of more pronounced density waves with a ten-
dency towards a spatial ordering. Figure 4 shows the pat-
tern for A1 = 2. Furthermore it is interesting to note that
starting from a completely disordered state obtained with
A1 = 0 and switching A1 to 1, one can observe the birth
of localised pulse (corresponding to a local increase of
the packing fraction) which propagates sideways. The suc-
cessive passage of the solitons on the initially disordered
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Fig. 4. Spatio-temporal potrait of the packing fraction of the
flow for A1 = 2.

pattern leave behind it a more ordered structure. The soli-
tons act as a kind of wavelength selector. However the
exact mechanism of selection of the wavelength remains
an open question. We can just argue that the wavelength
of the pattern is of order of that of the most dangerous
mode qmax (which is given in the rescaled variables by
qmax = 1/2).

In the light of the above results, it is important to
evaluate carefully the order of magnitude of the coefficient
A1 in order to decide which type of structure would be
expected in real situations. This coefficient expresses the
dispersion of the density waves, indicating that the phase
velocity is different from the group velocity. The definition
of A1 entails that this coefficient is rather large since it
scales as ε−1/2. This means that close to the onset of the
instability dynamics is expected to be regular and to be
chaotic as we get away from the instability threshold. In
order to be more specific, we need to estimate A1. Using
the expressions of a1, a2 and a4, we find

A1 ∼ ε
−1/2λ1/2µ ∼ ε−1/2(1− e)1/2(σ/l)1/2. (59)

A1 is practically independent of the bumpiness angle but
it is sensitive to the channel width and to the dissipative
properties of the flow particles.A1 increases as the dissipa-
tion increases and as the channel width gets smaller. For
(1−e) ∼ 0.1 and l ∼ 10σ, A1 ∼ 0.1 ε−1/2. For such param-
eters, dynamics is regular only very close to the threshold
instability (for ε ∼ 0.01, A1 ∼ 1) and becomes erratic fur-
ther from the threshold (for ε ∼ 0.1, A1 ∼ 0.3). For larger
channel width (l ∼ 40σ), chaotic dynamics is expected
even relatively close to the onset of the instability (since
for ε ∼ 0.01, A1 ∼ 0.5). In addition, our analysis suggests
that the more dissipative the granular media is, the more
pronounced and ordered the density waves are. These fea-
tures seem to corroborate recent experimental results ob-
tained for granular flows through vertical channels with
serrated walls [18]. These experiments are carried out with
particles of large diameter (of order of a few millimetres)
varying the channel width and the dissipative properties
of the grains and the first outcomes tend to show that the
apparition of spatially ordered density waves is favoured
by narrow channels and dissipative grains.

5 Conclusion
In summary, we have shown that kinetic model for gran-
ular flows can account for the apparition of the density

waves resulting from a dynamical instability. Starting from
the continuum model of Jenkins and Savage, we have de-
rived equations of motions for flows through narrow chan-
nels. The analysis of the motion equations shows that the
homogeneous flows destabilises below a critical density in
favour of the appearance of density waves. Furthermore
the flow dynamics close to instability threshold is expected
to be described by an equation which is a mixture between
the KS and the KDV equation. The competition between
chaos and solitons may lead either to regular spatially or-
dered density waves or to spatio-temporal chaotic dynam-
ics. We argue that for narrow channels and very dissipative
grains, the density waves should be rather regular and ex-
hibit a spatial ordering, whereas for larger channels and
less dissipative grains we expect erratic dynamics. We are
however aware that our approach suffers from approxi-
mations which are not always properly controlled and it
would be crucial to confront our predictions with experi-
ments. Our findings are expected to be pertinent for gran-
ular flows where the drag force due to air is negligible in
comparison with the gravity, namely for flows composed of
particles of large diameter (typically of order of millimetre
for steel beads). Unfortunately, experiments on granular
flows are often carried out with particles of small diameter
(between 0.05 to 0.2 mm). To our knowledge, the only ex-
periment using grains of large diameter (of order of a few
millimetres) is that of Clément et al. [18] and their prelimi-
nary results seem to corroborate qualitatively our findings
about the nonlinear dynamics of the density waves. The fi-
nal outcomes of their experiment should bring us valuable
informations in order to test quantitatively our overall
results.
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